천문학, 태양계의 형성과 진화(3)
행성 이동
성운 이론에 따르면 가스 행성 네 개 중 바깥쪽에 있는 천왕성과 해왕성은 ‘잘못된 위치’에 있는 존재이다. 이들 둘은 이론에 의하면 태양 성운의 농도가 희박해지는 지대에 자리 잡고 있으며, 공전 주기가 길어서 성운 이론으로는 지금과 같은 크기로 자라났음을 설명할 수 없다. 따라서 이들은 원래 목성과 토성 근처 궤도에 있었으나, 이후 수억 년에 걸쳐 현재의 위치로 궤도를 바깥쪽으로 옮겼다고 여겨진다.
이들 두 행성이 이동했다는 가설을 통해 현재 태양계 최외곽 지대의 구성에 대한 의문을 해명할 수 있다. 해왕성 너머에는 카이퍼 대, 산란 분포대, 오르트 구름의, 작은 얼음 덩어리로 이루어진 성긴 천체의 집단이 있으며, 이들로부터 우리가 관측하는 혜성이 생겨나는 것으로 보인다. 이들 집단은 태양에서 멀리 떨어져 있었기 때문에 뭉치는 속도가 느렸고, 태양 성운이 흩어지기 전에 행성 규모로 자랄 수 없었다. 또한, 이 지대에는 애초부터 행성을 구성할 정도로 충분한 양의 물질도 있지 않았다. 현재 카이퍼 대는 태양에서 30~55천문단위에 이르는 지역에 있으며, 산란 분포대는 100천문단위까지, 오르트 구름은 50,000천문단위까지 펼쳐져 있다. 그러나 원래 카이퍼 대는 지금보다 더 밀도가 높았고, 태양에 가까이 있었으며, 그 거리는 바깥쪽 경계면이 태양에서 약 30천문단위, 안쪽 경계면은 15~20천문단위 정도였다고 추측하고 있다. 이 안쪽 경계면보다 더 안쪽에는 천왕성과 해왕성이 지금보다도 더 태양에 가까운 곳을 돌고 있었으며, 지금과는 달리 천왕성이 해왕성보다 더 바깥쪽에 있었다.
태양계가 태어난 이후 많은 미행성 및 그들 서로 중력 섭동은 가스 행성 네 개의 궤도를 천천히 바꾸어 왔다. 태양계 탄생 후 약 5~6억 년이 흘러, 목성과 토성의 궤도는 2:1 공명 상태를 보이게 되었다(이는 목성이 태양을 두 번 돌 동안 토성이 한 번 돈다는 의미이다.). 이로 말미암아 두 행성은 바깥쪽 천체들을 중력적으로 압박했으며 해왕성은 천왕성 바깥으로 물러나, 당시 존재했던 카이퍼 대 한가운데 자리 잡게 되었다. 천왕성과 해왕성은 작은 얼음 천체들을 태양계 안쪽으로 이동시켰으며, 대신 자신들은 바깥쪽으로 궤도를 옮겼다. 이들 미행성 천체는 안쪽으로 이동하고 같은 식으로 안쪽에 있던 행성들의 궤도를 태양에서 더 멀리 떨어진 곳으로 옮기고, 대신 자신들은 태양 쪽으로 더 가까이 접근하게 되었다. 이 과정은 목성이 자신의 강한 중력으로 이들 미행성을 이심률이 높은 공전 궤도 상태로 바꾸거나 또는 태양계 밖으로 내치면서 끝을 맺게 된다. 목성도 미행성과의 상호 작용으로 궤도를 좀 더 안쪽으로 옮기게 되었다. 이때 이심률이 큰 공전 궤도를 그리게 된 천체들이 지금의 오르트 구름 이며, 해왕성이 바깥쪽으로 이동하면서 오르트 천체보다 덜한 이심률을 보이게 만든 천체가 지금의 카이퍼 대이다. 이 가설에 따르면, 현재 오르트 구름과 카이퍼 대가 가진 작은 질량을 설명할 수 있다. 분산된 천체 중 명왕성과 같은 부류는 해왕성의 궤도와 중력적으로 묶였으며, 궤도 공명 상태를 보이게 되었다. 결국, 미행성 원반 내에서의 마찰함으로써 천왕성과 해왕성의 궤도는 다시금 원형에 가까운 모습을 하게 되었다.
외행성계와는 달리, 내행성의 궤도는 태양계의 탄생 이래로 크게 변하지 않았다고 여겨진다. 그 이유는 이들의 궤도는 대충돌 시기를 지나면서도 변하지 않았기 때문이다.
후기 대충돌
외행성들은 자리를 옮기면서 중력적으로 수많은 소행성을 흩어 내행성 지대로 위치를 옮기게 하였으며, 원래 있던 물질 상당량을 고갈시켜 지금처럼 아주 적은 양의 물질만 남겨 놓았다. 이 사건이 지금으로부터 40억 년 전(태양계가 생겨나고 5~6억 년 뒤)에 있었던 후기 대충돌의 원인이 되었을 것이다. 이 후기 대충돌은 수억 년 동안 이어졌고, 그 증거는 지질학적으로 죽은 천체인 달이나 수성 표면에 있는 많은 충돌구(운석 구덩이, 크레이터)를 통해 입증되었다. 가장 오래된 생명체의 흔적은 지금으로부터 약 38억 년 전으로 거슬러 올라가는데, 이때는 후기 대충돌이 그치던 시점과 거의 일치한다.
애리조나 주에 있는 충돌구의 사진. 이 충돌구는 5만 년 전 지름 50미터짜리 소행성과 부딪혀 생겨났으며, 아직도 태양계의 강착 과정이 종료되지 않았음을 알려 주는 증거이다.
충돌 현상은 태양계 진화 이론에서 일익을 담당한다고(비록 그것이 지금은 자주 일어나지 않지만) 여겨진다. 충돌이 지금도 계속된다는 사실은 1994년 목성에 슈메이커-레비 제9혜성이 충돌했던 사실이나, 애리조나주에 있는 충돌구 등을 통해 알 수 있다. 그러므로 태양계의 강착 과정은 아직 완전히 끝나지 않았으며, 이는 지구 생명체들에게 위협적인 요소가 될 수 있다.
외부 태양계의 진화는 태양 근처에서 초신성이 폭발했거나, 또는 태양계가 성간 구름을 통과함으로써 영향을 받았다고 보인다. 외부 태양계 천체의 표면은 태양풍, 작은 운석, 성간 물질 내 중성 성분과 부딪혀 우주 풍화 과정을 겪은 것으로 보인다.
후기 대충돌 이후 소행성대의 진화는 주로 충돌로써 이루어졌다. 질량이 큰 천체는 충돌을 심하게 겪어도 자체 중력 때문에 갖고 있던 물질을 잃지 않는다. 그러나 소행성은 질량이 작아서 충돌하여 산산조각으로 깨지고 흩어졌다. 현재 몇몇 소행성 주위를 도는 소행성 위성은 충돌하여 본체에서 떨어져 나갔으나, 본체의 중력에서 완전히 탈출하지 못한 존재로 여겨진다.
자연 위성
행성과 천체 주위를 도는 대부분의 자연 위성은 그들의 주인과 함께 태양계의 탄생 시절부터 계속 존재했었다. 이들 위성은 다음 세 가지 시나리오 중 한 방법을 통해 형성되었다.
행성 주위에 형성되어 있던 원반에서 생겨났다 (이는 가스 행성에 적용된다).
얕은 각도로 한 천체가 더 큰 다른 천체에 충돌하여 그 파편이 뭉쳐서 생겨났다.
지나가던 천체가 더 큰 천체의 중력에 붙잡혔다.
목성이나 토성의 주위에는 이오, 유로파, 가니메데, 칼리스토 등 덩치가 큰 위성이 여럿 존재하며, 그들의 주인이 태양 주변에서 생성된 것과 유사한 방식으로 그들도 태어났다고 여겨진다. 이처럼 추측한 이유는 이들 위성이 덩치가 크고 어머니 행성에 가까이 있기 때문이다. 이런 천체는 포획 이론으로는 설명할 수 없으며, 가스 행성의 조성을 생각하면 충돌 이론도 가능성이 없다.
반면 가스 행성으로부터 먼 곳을 도는 위성은 크기가 작고 궤도도 찌그러져 있거나 제멋대로이다. 이와 같은 속성은 포획된 천체의 특징이다.
이런 위성은 어머니 행성의 자전 방향과는 반대로 공전한다. 이런 위성 중 가장 덩치가 큰 것은 해왕성의 위성 트리톤으로, 카이퍼 대에 있었으나 해왕성의 인력 때문에 붙잡혔다고 여겨진다.
태양계의 암석 천체를 도는 위성은 대부분 충돌이나 포획을 통해 생겨났다. 화성의 작은 두 위성 데이모스와 포보스는 화성의 중력에 포획된 소행성으로 보인다. 지구의 달은 큰 규모의 단일성 충돌 사건으로 생겨났다고 여겨진다. 지구와 부딪혔던 천체의 질량은 대략 화성 정도였으며, 발생 시기는 대충돌 말미 무렵이었을 것이다. 충돌 때문에 지구의 맨틀 중 일부가 우주 공간으로 분출되었으며, 이 맨틀의 파편들은 뭉쳐서 달이 되었다. 이 충돌은 현재의 지구를 만든 융합 과정 중 마지막이었을 것이다. 지구에 부딪혔다고 생각되는 이 화성 정도 질량의 천체가 안정적인 지구-태양 라그랑주점(L4 또는 L5)에서 태어났고, 이후 원래 있던 위치를 이탈했다고 보는 견해가 있다. 명왕성의 위성 카론도 큰 규모의 충돌로 생겨났을 것이다. 명왕성-카론 계와 지구-달의 계는 태양계 내에서 위성의 질량이 어머니 행성의 1퍼센트가 넘는 둘뿐인 사례이다.